skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Atif, Touheed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. —In this work, we address the lossy quantum-classical (QC) source coding problem, where the task is to compress the classical information about a quantum source, obtained after performing a measurement, below the Shannon entropy of the measurement outcomes, while incurring a bounded reconstruction error. We propose a new formulation, namely, "rate-channel theory", for the lossy QC source coding problem based on the notion of a backward (posterior) channel. We employ a singleletter posterior channel to capture the reconstruction error in place of the single-letter distortion observable. The formulation requires the reconstruction of the compressed quantum source to satisfy a block error constraint as opposed to the average singleletter distortion criterion in the rate-distortion setting. We also develop an analogous formulation for the classical variant with respect to a corresponding posterior channel. Furthermore, we characterize the asymptotic performance limit of the lossy QC and classical source coding problems in terms of single-letter quantum mutual information and mutual information quantities of the given posterior channel, respectively. We provide examples for the above formulations. 
    more » « less
  2. We consider the task of communicating a generic bivariate function of two classical correlated sources over a Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state. We first propose a coding scheme based on asymptotically good algebraic structured codes, in particular, nested coset codes, and provide a set of sufficient conditions for the reconstruction of the function of the sources over a CQ- MAC. The proposed technique enables the decoder to recover the desired function without recovering the sources themselves. We further improve this by employing a coding scheme based on a classical superposition of algebraic structured codes and unstructured codes. This coding scheme allows exploiting the symmetric structure common amongst the sources and also leverage the asymmetries. We derive a new set of sufficient conditions that strictly enlarges the largest known set of sources whose function can be reconstructed over any given CQ-MAC, and identify examples demonstrating the same. We provide these conditions in terms of single-letter quantum information- theoretic quantities. 
    more » « less
  3. null (Ed.)
  4. We consider a scenario wherein two parties Alice and Bob are provided X1 and X2 – samples that are IID from a PMF P_X1X2. Alice and Bob can communicate to Charles over (noiseless) communication links of rate R1 and R2 respectively. Their goal is to enable Charles generate samples Y such that the triple (X1,X2,Y) has a PMF that is close, in total variation, to P_X1X2Y. In addition, the three parties may posses shared common randomness at rate C. We address the problem of characterizing the set of rate triples (R1, R2, C) for which the above goal can be accomplished. We provide a set of sufficient conditions, i.e., an achievable rate region for this three party setup. Our work also provides a complete characterization of a point-to-point setup wherein Bob is absent and Charles is provided with side-information. 
    more » « less